A two-level neural network approach for flicker source location

Haidar Samet (Corresponding author), Mahdi Khosravi, Teymoor Ghanbari, Mohsen Tajdinian

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Downloads (Pure)

Samenvatting

Identification of flicker sources is necessary to find who is responsible for the measured flicker and improve power quality. This paper puts forward a new method for identifying flicker sources with minimum measurement units. Contrary to the previous works where flicker sources are considered a single-frequency signal, the autoregressive moving average (ARMA) is used to model active and reactive power variations. First, the envelope of the network voltage at the considered busbars is derived by the Hilbert transform. Then, appropriate flicker indices are extracted from the power spectral density (PSD) of the voltage envelope. A novel two-level structure of a set of ANNs is proposed, which needs a low number of voltage measurement units to locate the flicker sources. Using the captured data from different simulations of various scenarios, the Artificial Neural Networks (ANNs) are trained to categorize flicker sources.

Originele taal-2Engels
Artikelnummer107157
Aantal pagina's17
TijdschriftComputers and Electrical Engineering
Volume92
DOI's
StatusGepubliceerd - jun 2021

Bibliografische nota

Publisher Copyright:
© 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'A two-level neural network approach for flicker source location'. Samen vormen ze een unieke vingerafdruk.

Citeer dit