Samenvatting
For a fixed finite family of graphs FF, the FF-Minor-Free Deletion problemtakes as input a graph G and an integer ℓℓ and asks whether there exists a set X⊆V(G)X⊆V(G) of size at most ℓℓ such that G−XG−X is FF-minor-free. For F={K2}F={K2} and F={K3}F={K3} this encodes VertexCover and FeedbackVertex Set respectively. When parameterized by thefeedback vertex number of G these two problems areknown to admit a polynomial kernelization. Such a polynomial kernelization alsoexists for any FF containing a planar graph but no forests.
In this paper we show that FF-Minor-Free Deletion parameterizedby the feedback vertex number is MK[2]MK[2]-hard for F={P3}F={P3}. This rules out the existence of a polynomial kernel ssuming NP⊈coNP/polyNP⊈coNP/poly, and also gives evidence that the problem does not admit a polynomialTuring kernel. Our hardness result generalizes to any FF not containing a P3P3-subgraph-free graph, using as parameter the vertex-deletion distance totreewidth mintw(F)mintw(F), where mintw(F)mintw(F) denotes the minimum treewidth of the graphs in FF. For the other case, where FF contains a P3P3-subgraph-free graph, we present a polynomial Turing kernelization. Ourresults extend to FF-Subgraph-Free Deletion.
Originele taal-2 | Engels |
---|---|
Titel | Graph-Theoretic Concepts in Computer Science - 45th International Workshop, WG 2019, Revised Papers |
Redacteuren | Ignasi Sau, Dimitrios M. Thilikos |
Plaats van productie | Cham |
Uitgeverij | Springer |
Pagina's | 106-119 |
Aantal pagina's | 14 |
ISBN van elektronische versie | 978-3-030-30786-8 |
ISBN van geprinte versie | 978-3-030-30785-1 |
DOI's | |
Status | Gepubliceerd - 2019 |
Evenement | 45th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2019 - Catalonia, Spanje Duur: 19 jun. 2019 → 21 jun. 2019 |
Publicatie series
Naam | Lecture Notes in Computer Science |
---|---|
Volume | 11789 |
Congres
Congres | 45th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2019 |
---|---|
Land/Regio | Spanje |
Stad | Catalonia |
Periode | 19/06/19 → 21/06/19 |