A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

J.M. Palomares Linares, A. Kohut, G. Galbacs, R.A.H. Engeln, Z. Geretovszky

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

30 Citaten (Scopus)
184 Downloads (Pure)


We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a “hot spot” with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.
Originele taal-2Engels
Aantal pagina's11
TijdschriftJournal of Applied Physics
Nummer van het tijdschrift23
StatusGepubliceerd - 21 dec. 2015


Duik in de onderzoeksthema's van 'A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge'. Samen vormen ze een unieke vingerafdruk.

Citeer dit