A third-order multistep time discretization for a Chebyshev-tau method

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)
6 Downloads (Pure)

Samenvatting

A time discretization scheme based on the third-order backward difference formula has been embedded into a Chebyshev tau spectral method for the Navier–Stokes equations. The time discretization is a variant of the second-order backward scheme proposed by Krasnov et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible channel flow have been performed to compare the backward scheme to the Runge–Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge–Kutta scheme leads to a poor convergence of some third-order spatial derivatives in the direct vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The convergence at the wall is shown to be significantly improved if the backward scheme is applied.
Originele taal-2Engels
Pagina's (van-tot)162-169
TijdschriftJournal of Computational Physics
Volume304
DOI's
StatusGepubliceerd - 1 jan 2016

Vingerafdruk Duik in de onderzoeksthema's van 'A third-order multistep time discretization for a Chebyshev-tau method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit