A survey on concept drift adaptation

J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. Bouchachia

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2154 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners.
Originele taal-2Engels
Artikelnummer44
Pagina's (van-tot)44/1-37
Aantal pagina's37
TijdschriftACM Computing Surveys
Volume46
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 2014

Vingerafdruk

Duik in de onderzoeksthema's van 'A survey on concept drift adaptation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit