A subspace method for large-scale trace ratio problems

Giulia Ferrandi (Corresponding author), Michiel E. Hochstenbach, M. Rosário Oliveira

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Downloads (Pure)

Samenvatting

A subspace method is introduced to solve large-scale trace ratio problems. This approach is matrix-free, requiring only the action of the two matrices involved in the trace ratio. At each iteration, a smaller trace ratio problem is addressed in the search subspace. Additionally, the algorithm is endowed with a restarting strategy, that ensures the monotonicity of the trace ratio value throughout the iterations. The behavior of the approximate solution is investigated from a theoretical viewpoint, extending existing results on Ritz values and vectors, as the angle between the search subspace and the exact solution approaches zero. Numerical experiments in multigroup classification show that this new subspace method tends to be more efficient than iterative approaches relying on (partial) eigenvalue decompositions at each step.

Originele taal-2Engels
Artikelnummer108108
Aantal pagina's17
TijdschriftComputational Statistics and Data Analysis
Volume205
DOI's
StatusGepubliceerd - mei 2025

Bibliografische nota

Publisher Copyright:
© 2024 The Author(s)

Vingerafdruk

Duik in de onderzoeksthema's van 'A subspace method for large-scale trace ratio problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit