A strong approximation of the shortt process

J.H.J. Einmahl, M. Geilen

    Onderzoeksoutput: Boek/rapportRapportAcademic

    57 Downloads (Pure)

    Samenvatting

    A shortt of a one dimensional probability distribution is defined to be an interval which has at least probability t and minimal length. The length of a shortt, U(t), and its obvious estimator, U_n(t), are significant measures of scale of a probability distribution and the corresponding random sample, respectively. The shortt process is defined to be $ \sqrt{n}(U_n(t)-U(t)) / U'(t) $, similarly to the definition of the quantile process. It is known that this process converges weakly, under natural regularity conditions, to a Brownian bridge. In this note a strong approximation of the shortt process by a Kiefer process is established, which yields the weak convergence as a corollary. Applications of the result to the global and local strong limiting behaviour of the shortt process are also presented.
    Originele taal-2Engels
    Plaats van productieEindhoven
    UitgeverijTechnische Universiteit Eindhoven
    Aantal pagina's9
    StatusGepubliceerd - 1998

    Publicatie series

    NaamMemorandum COSOR
    Volume9826
    ISSN van geprinte versie0926-4493

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A strong approximation of the shortt process'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit