A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit fourier factorization

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

12 Citaten (Scopus)
88 Downloads (Pure)

Samenvatting

For dielectric periodic gratings, we propose the combination of a spectral-domain volume integral equation and Fourier factorization rules to address the Gibbs phenomenon caused by jumps in both the fields and the permittivity. From a theoretical point of view we discuss two ways to overcome the computational complexity caused by the inverse rule by changing the fundamental unknowns of the underlying electromagnetic problem. The resulting numerical system is solved iteratively and the corresponding matrix-vector product has an O(NMlogM) complexity, where M is the number of Fourier modes and N is the number of sample points in the longitudinal direction.
Originele taal-2Engels
Pagina's (van-tot)133-149
TijdschriftProgress In Electromagnetics Research B
Volume36
DOI's
StatusGepubliceerd - 2012

Vingerafdruk

Duik in de onderzoeksthema's van 'A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit fourier factorization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit