Samenvatting
We show how to construct (1 + ε)-spanner over a set P of n points in ℝd that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, ε ∈ (0, 1), the computed spanner G has O(ε−7d log7 ε−1 · ϑ−6n log n(log log n)6) edges. Furthermore, for any k, and any deleted set B ⊆ P of k points, the residual graph G \ B is (1 + ε)-spanner for all the points of P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion.
Originele taal-2 | Engels |
---|---|
Titel | 35th International Symposium on Computational Geometry, SoCG 2019 |
Redacteuren | Gill Barequet, Yusu Wang |
Uitgeverij | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Aantal pagina's | 15 |
ISBN van elektronische versie | 9783959771047 |
DOI's | |
Status | Gepubliceerd - 1 jun. 2019 |
Evenement | 35th International Symposium on Computational Geometry, (SoCG2019) - Portland, Verenigde Staten van Amerika Duur: 18 jun. 2019 → 21 jun. 2019 http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=80745©ownerid=35838 |
Publicatie series
Naam | Leibniz International Proceedings in Informatics (LIPIcs) |
---|---|
Volume | 129 |
Congres
Congres | 35th International Symposium on Computational Geometry, (SoCG2019) |
---|---|
Verkorte titel | SoCG2019 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Portland |
Periode | 18/06/19 → 21/06/19 |
Internet adres |
Financiering
Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF awards CCF-1421231. Dániel Oláh: Supported by the Netherlands Organisation for Scientific Research (NWO) through Gravitation-grant NETWORKS-024.002.003.