A reduced-order computational homogenization framework for locally resonant metamaterial structures

Andrea Francesco Russillo, Varvara G. Kouznetsova, Giuseppe Failla (Corresponding author), Marc G.D. Geers

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review


A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established scale transition relations, the framework brings as a main novelty a reduced-order macroscopic homogenized continuum whose governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on the macroscopic domain.

Originele taal-2Engels
TijdschriftComputational Mechanics
Nummer van het tijdschriftX
StatusGeaccepteerd/In druk - 2024


Duik in de onderzoeksthema's van 'A reduced-order computational homogenization framework for locally resonant metamaterial structures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit