A Recursive Algorithm for Computing Inferences in Imprecise Markov Chains

Natan T'Joens, Thomas Krak, Jasper De Bock, Gert de Cooman

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

11 Citaten (Scopus)

Samenvatting

We present an algorithm that can efficiently compute a broad class of inferences for discrete-time imprecise Markov chains, a generalised type of Markov chains that allows one to take into account partially specified probabilities and other types of model uncertainty. The class of inferences that we consider contains, as special cases, tight lower and upper bounds on expected hitting times, on hitting probabilities and on expectations of functions that are a sum or product of simpler ones. Our algorithm exploits the specific structure that is inherent in all these inferences: they admit a general recursive decomposition. This allows us to achieve a computational complexity that scales linearly in the number of time points on which the inference depends, instead of the exponential scaling that is typical for a naive approach.

Originele taal-2Engels
TitelSymbolic and Quantitative Approaches to Reasoning with Uncertainty - 15th European Conference, ECSQARU 2019, Proceedings
RedacteurenGabriele Kern-Isberner, Zoran Ognjanović
UitgeverijSpringer
Pagina's455-465
Aantal pagina's11
ISBN van geprinte versie9783030297640
DOI's
StatusGepubliceerd - 2019

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11726 LNAI
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Vingerafdruk

Duik in de onderzoeksthema's van 'A Recursive Algorithm for Computing Inferences in Imprecise Markov Chains'. Samen vormen ze een unieke vingerafdruk.

Citeer dit