Activiteiten per jaar
Samenvatting
Gesture recognition enables a natural extension of the way we currently interact with devices. Commercially available gesture recognition systems are usually pre-trained and offer no option for customization by the user. In order to improve the user experience, it is desirable to allow end users to define their own gestures. This scenario requires learning from just a few training examples if we want to impose only a light training load on the user. To this end, we propose a gesture classifier based on a hierarchical probabilistic modeling approach. In this framework, high-level features that are shared among different gestures can be extracted from a large labeled data set, yielding a prior distribution for gestures. When learning new types of gestures, the learned shared prior reduces the number of required training examples for individual gestures. We implemented the proposed gesture classifier for a Myo sensor bracelet and show favorable results for the tested system on a database of 17 different gesture types. Furthermore, we propose and implement two methods to incorporate the gesture classifier in a real-time gesture recognition system.
Originele taal-2 | Engels |
---|---|
Artikelnummer | 1806.11408v2 |
Aantal pagina's | 24 |
Tijdschrift | arXiv |
Volume | 2018 |
DOI's | |
Status | Gepubliceerd - 6 jul. 2018 |
Vingerafdruk
Duik in de onderzoeksthema's van 'A probabilistic modeling approach to one-shot gesture recognition'. Samen vormen ze een unieke vingerafdruk.Activiteiten
- 1 Congres
-
Annual machine learning conference of the Benelux (Benelearn 2017)
van Diepen, A. (Deelnemer)
10 jun. 2017Activiteit: Types deelname aan of organisatie van een evenement › Congres › Wetenschappelijk
Onderzoekersoutput
- 1 Conferentiebijdrage
-
An in-situ trainable gesture classifier
van Diepen, A., Cox, M. G. H. & de Vries, A., 10 jun. 2017, Benelearn 2017: Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning, Technische Universiteit Eindhoven, 9-10 June 2017. Duivesteijn, W., Pechenizkiy, M. & Fletcher , G. H. L. (uitgave). blz. 66-68Onderzoeksoutput: Hoofdstuk in Boek/Rapport/Congresprocedure › Conferentiebijdrage › Academic › peer review
Open AccessBestand
Datasets
-
Orientation of the arm used for gesture recognition
van Diepen, A. (Ontwerper), de Vries, A. (Ontwerper) & Cox, M. G. H. (Ontwerper), 4TU.Centre for Research Data, 6 jan. 2020
DOI: 10.4121/uuid:6057a153-43dc-4711-b5d9-090f9857a4de
Dataset