A probabilistic modeling approach to one-shot gesture recognition

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

58 Downloads (Pure)

Samenvatting

Gesture recognition enables a natural extension of the way we currently interact with devices. Commercially available gesture recognition systems are usually pre-trained and offer no option for customization by the user. In order to improve the user experience, it is desirable to allow end users to define their own gestures. This scenario requires learning from just a few training examples if we want to impose only a light training load on the user. To this end, we propose a gesture classifier based on a hierarchical probabilistic modeling approach. In this framework, high-level features that are shared among different gestures can be extracted from a large labeled data set, yielding a prior distribution for gestures. When learning new types of gestures, the learned shared prior reduces the number of required training examples for individual gestures. We implemented the proposed gesture classifier for a Myo sensor bracelet and show favorable results for the tested system on a database of 17 different gesture types. Furthermore, we propose and implement two methods to incorporate the gesture classifier in a real-time gesture recognition system.
Originele taal-2Engels
Artikelnummer1806.11408v2
Aantal pagina's24
TijdschriftarXiv
Volume2018
DOI's
StatusGepubliceerd - 6 jul. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'A probabilistic modeling approach to one-shot gesture recognition'. Samen vormen ze een unieke vingerafdruk.
  • An in-situ trainable gesture classifier

    van Diepen, A., Cox, M. G. H. & de Vries, A., 10 jun. 2017, Benelearn 2017: Proceedings of the Twenty-Sixth Benelux Conference on Machine Learning, Technische Universiteit Eindhoven, 9-10 June 2017. Duivesteijn, W., Pechenizkiy, M. & Fletcher , G. H. L. (uitgave). blz. 66-68

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Open Access
    Bestand

Citeer dit