A Probabilistic Model for Real-Time Semantic Prediction of Human Motion Intentions from RGBD-Data

Wouter Houtman (Corresponding author), G. Bijlenga, Elena Torta, M.J.G. (René) van de Molengraft

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

For robots to execute their navigation tasks both fast and safely in the presence of humans, it is necessary to make predictions about the route those humans intend to follow. Within this work, a model-based method is proposed that relates human motion behavior perceived from RGBD input to the constraints imposed by the environment by considering typical human routing alternatives. Multiple hypotheses about routing options of a human towards local semantic goal locations are created and validated, including explicit collision avoidance routes. It is demonstrated, with real-time, real-life experiments, that a coarse discretization based on the semantics of the environment suffices to make a proper distinction between a person going, for example, to the left or the right on an intersection. As such, a scalable and explainable solution is presented, which is suitable for incorporation within navigation algorithms.
Originele taal-2Engels
Artikelnummer4141
Aantal pagina's17
TijdschriftSensors
Volume21
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - 16 jun. 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'A Probabilistic Model for Real-Time Semantic Prediction of Human Motion Intentions from RGBD-Data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit