A pressure correction local defect correction algorithm for laminar flame simulation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Downloads (Pure)

Uittreksel

We present a numerical algorithm to solve the zero-Mach number approximation of the governing equations for laminar flames. The ingredients of the algorithm are a Pressure Correction (PC) method to decouple the computation of velocity and pressure, and a multi-level Local Defect Correction (LDC) method to solve the resulting set of (non)linear boundary value problems. The PC method is based on a constraint equation, rather than the continuity equation, describing expansion of the gas mixture due to combustion. Moreover, we combine the PC method with implit Euler time integration to compute steady flames. Boundary value problems for laminar flames are characterised by a high activity region, the so-called flame front, where the solution varies rapidly. The basic idea of the LDC method is to compute a global coarse grid solution, that is accurate enough to represent the solution outside the flame front, and a sequence of local fine grid solutions to capture all the details in the flame front. Moreover, these fine grid solutions are subsequently used to improve the coarse grid solution by a defect correction technique. We have applied our PC LDC algorithm to simulate a two-dimensional methane/air flame.
Originele taal-2Engels
TitelProceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006)
RedacteurenP. Wesseling, E. Oñate, J. Périaux
Plaats van productieDelft
UitgeverijTechnische Universiteit Delft
Pagina's19-
ISBN van geprinte versie90-9020970-0
StatusGepubliceerd - 2006

Vingerafdruk

Defects
Boundary value problems
Gas mixtures
Mach number
Methane
Air

Citeer dit

Thije Boonkkamp, ten, J. H. M., Rook, R., & Mattheij, R. M. M. (2006). A pressure correction local defect correction algorithm for laminar flame simulation. In P. Wesseling, E. Oñate, & J. Périaux (editors), Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006) (blz. 19-). Delft: Technische Universiteit Delft.
Thije Boonkkamp, ten, J.H.M. ; Rook, R. ; Mattheij, R.M.M. / A pressure correction local defect correction algorithm for laminar flame simulation. Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006). redacteur / P. Wesseling ; E. Oñate ; J. Périaux. Delft : Technische Universiteit Delft, 2006. blz. 19-
@inproceedings{ad9395eaabe445a5a5c32dda613d0707,
title = "A pressure correction local defect correction algorithm for laminar flame simulation",
abstract = "We present a numerical algorithm to solve the zero-Mach number approximation of the governing equations for laminar flames. The ingredients of the algorithm are a Pressure Correction (PC) method to decouple the computation of velocity and pressure, and a multi-level Local Defect Correction (LDC) method to solve the resulting set of (non)linear boundary value problems. The PC method is based on a constraint equation, rather than the continuity equation, describing expansion of the gas mixture due to combustion. Moreover, we combine the PC method with implit Euler time integration to compute steady flames. Boundary value problems for laminar flames are characterised by a high activity region, the so-called flame front, where the solution varies rapidly. The basic idea of the LDC method is to compute a global coarse grid solution, that is accurate enough to represent the solution outside the flame front, and a sequence of local fine grid solutions to capture all the details in the flame front. Moreover, these fine grid solutions are subsequently used to improve the coarse grid solution by a defect correction technique. We have applied our PC LDC algorithm to simulate a two-dimensional methane/air flame.",
author = "{Thije Boonkkamp, ten}, J.H.M. and R. Rook and R.M.M. Mattheij",
year = "2006",
language = "English",
isbn = "90-9020970-0",
pages = "19--",
editor = "P. Wesseling and E. O{\~n}ate and J. P{\'e}riaux",
booktitle = "Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006)",
publisher = "Technische Universiteit Delft",

}

Thije Boonkkamp, ten, JHM, Rook, R & Mattheij, RMM 2006, A pressure correction local defect correction algorithm for laminar flame simulation. in P Wesseling, E Oñate & J Périaux (redactie), Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006). Technische Universiteit Delft, Delft, blz. 19-.

A pressure correction local defect correction algorithm for laminar flame simulation. / Thije Boonkkamp, ten, J.H.M.; Rook, R.; Mattheij, R.M.M.

Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006). redactie / P. Wesseling; E. Oñate; J. Périaux. Delft : Technische Universiteit Delft, 2006. blz. 19-.

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

TY - GEN

T1 - A pressure correction local defect correction algorithm for laminar flame simulation

AU - Thije Boonkkamp, ten, J.H.M.

AU - Rook, R.

AU - Mattheij, R.M.M.

PY - 2006

Y1 - 2006

N2 - We present a numerical algorithm to solve the zero-Mach number approximation of the governing equations for laminar flames. The ingredients of the algorithm are a Pressure Correction (PC) method to decouple the computation of velocity and pressure, and a multi-level Local Defect Correction (LDC) method to solve the resulting set of (non)linear boundary value problems. The PC method is based on a constraint equation, rather than the continuity equation, describing expansion of the gas mixture due to combustion. Moreover, we combine the PC method with implit Euler time integration to compute steady flames. Boundary value problems for laminar flames are characterised by a high activity region, the so-called flame front, where the solution varies rapidly. The basic idea of the LDC method is to compute a global coarse grid solution, that is accurate enough to represent the solution outside the flame front, and a sequence of local fine grid solutions to capture all the details in the flame front. Moreover, these fine grid solutions are subsequently used to improve the coarse grid solution by a defect correction technique. We have applied our PC LDC algorithm to simulate a two-dimensional methane/air flame.

AB - We present a numerical algorithm to solve the zero-Mach number approximation of the governing equations for laminar flames. The ingredients of the algorithm are a Pressure Correction (PC) method to decouple the computation of velocity and pressure, and a multi-level Local Defect Correction (LDC) method to solve the resulting set of (non)linear boundary value problems. The PC method is based on a constraint equation, rather than the continuity equation, describing expansion of the gas mixture due to combustion. Moreover, we combine the PC method with implit Euler time integration to compute steady flames. Boundary value problems for laminar flames are characterised by a high activity region, the so-called flame front, where the solution varies rapidly. The basic idea of the LDC method is to compute a global coarse grid solution, that is accurate enough to represent the solution outside the flame front, and a sequence of local fine grid solutions to capture all the details in the flame front. Moreover, these fine grid solutions are subsequently used to improve the coarse grid solution by a defect correction technique. We have applied our PC LDC algorithm to simulate a two-dimensional methane/air flame.

M3 - Conference contribution

SN - 90-9020970-0

SP - 19-

BT - Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006)

A2 - Wesseling, P.

A2 - Oñate, E.

A2 - Périaux, J.

PB - Technische Universiteit Delft

CY - Delft

ER -

Thije Boonkkamp, ten JHM, Rook R, Mattheij RMM. A pressure correction local defect correction algorithm for laminar flame simulation. In Wesseling P, Oñate E, Périaux J, redacteurs, Proceedings European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, September 5-8, 2006). Delft: Technische Universiteit Delft. 2006. blz. 19-