A positive finite-difference advection scheme

W. Hundsdorfer, B. Koren, M. Loon, van, J.G. Verwer

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    141 Citaten (Scopus)
    2 Downloads (Pure)


    This paper examines a class of explicit finite-difference advection schemes derived along the method of lines. An important application field is large-scale atmospheric transport. The paper therefore focuses on the demand of positivity. For the spatial discretization, attention is confined to conservative schemes using five points per direction. The fourth-order central scheme and the family of ¿-schemes, comprising the second-order central, the second-order upwind, and the third-order upwind biased, are studied. Positivity is enforced through flux limiting. It is concluded that the limited third-order upwind discretization is the best candidate from the four examined. For the time integration attention is confined to a number of explicit Runge-Kutta methods of orders two up to four. With regard to the demand of positivity, these integration methods turn out to behave almost equally and no best method could be identified.
    Originele taal-2Engels
    Pagina's (van-tot)35-46
    TijdschriftJournal of Computational Physics
    Nummer van het tijdschrift1
    StatusGepubliceerd - 1995

    Vingerafdruk Duik in de onderzoeksthema's van 'A positive finite-difference advection scheme'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit