Samenvatting
A novel Krylov subspace method is proposed to substantially reduce the computational complexity of the special class of quadratic bilinear dynamical systems. Based on the first two generalized transfer functions of the system, a Petrov-Galerkin projection scheme is applied. It is shown that such a projection amounts to interpolating the transfer functions at specific points which, in fact, is equivalent to constructing the corresponding Krylov subspace. For single-input single-output systems, the relevant Krylov subspace can be readily constructed for the interpolation points. For multi-input multi-output systems, also user-specified directional information is required so that a tangential interpolation can be determined. The method is demonstrated by numerical examples.
Originele taal-2 | Engels |
---|---|
Titel | 2018 IEEE Conference on Decision and Control, CDC 2018 |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3217-3222 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 9781538613955 |
DOI's | |
Status | Gepubliceerd - 18 jan. 2019 |
Evenement | 57th IEEE Conference on Decision and Control, CDC 2018 - Miami, Verenigde Staten van Amerika Duur: 17 dec. 2018 → 19 dec. 2018 Congresnummer: 57 |
Publicatie series
Naam | Proceedings of the IEEE Conference on Decision and Control |
---|---|
Volume | 2018-December |
ISSN van geprinte versie | 0743-1546 |
ISSN van elektronische versie | 2576-2370 |
Congres
Congres | 57th IEEE Conference on Decision and Control, CDC 2018 |
---|---|
Verkorte titel | CDC 2018 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Miami |
Periode | 17/12/18 → 19/12/18 |