A novel Krylov method for model order reduction of quadratic bilinear systems

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)
3 Downloads (Pure)

Samenvatting

A novel Krylov subspace method is proposed to substantially reduce the computational complexity of the special class of quadratic bilinear dynamical systems. Based on the first two generalized transfer functions of the system, a Petrov-Galerkin projection scheme is applied. It is shown that such a projection amounts to interpolating the transfer functions at specific points which, in fact, is equivalent to constructing the corresponding Krylov subspace. For single-input single-output systems, the relevant Krylov subspace can be readily constructed for the interpolation points. For multi-input multi-output systems, also user-specified directional information is required so that a tangential interpolation can be determined. The method is demonstrated by numerical examples.

Originele taal-2Engels
Titel2018 IEEE Conference on Decision and Control, CDC 2018
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3217-3222
Aantal pagina's6
ISBN van elektronische versie9781538613955
DOI's
StatusGepubliceerd - 18 jan. 2019
Evenement57th IEEE Conference on Decision and Control, CDC 2018 - Miami, Verenigde Staten van Amerika
Duur: 17 dec. 201819 dec. 2018
Congresnummer: 57

Publicatie series

NaamProceedings of the IEEE Conference on Decision and Control
Volume2018-December
ISSN van geprinte versie0743-1546
ISSN van elektronische versie2576-2370

Congres

Congres57th IEEE Conference on Decision and Control, CDC 2018
Verkorte titelCDC 2018
Land/RegioVerenigde Staten van Amerika
StadMiami
Periode17/12/1819/12/18

Vingerafdruk

Duik in de onderzoeksthema's van 'A novel Krylov method for model order reduction of quadratic bilinear systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit