A novel industry grade dataset for fault prediction based on model-driven developed automotive embedded software

H. Altinger, S. Siegl, Y. Dajsuren, F. Wotawa

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    23 Citaten (Scopus)
    1 Downloads (Pure)

    Samenvatting

    In this paper, we present a novel industry dataset on static software and change metrics for Matlab/Simulink models and their corresponding auto-generated C source code. The data set comprises data of three automotive projects developed and tested accordingly to industry standards and restrictive software development guidelines. We present some background information of the projects, the development process and the issue tracking as well as the creation steps of the dataset and the used tools during development. A specific highlight of the dataset is a low measurement error on change metrics because of the used issue tracking and commit policies.
    Originele taal-2Engels
    Titel12th Working Conference on Mining Software Repositories (MSR'15, Florence, Italy, May 16-17, 2015)
    Plaats van productiePiscataway
    UitgeverijIEEE Press
    Pagina's494-497
    ISBN van geprinte versie978-0-7695-5594-2
    DOI's
    StatusGepubliceerd - 2015
    Evenement12th Working Conference on Mining Software Repositories (MSR 2015) - Palazzo dei Congressi, Florence, Italië
    Duur: 16 mei 201517 mei 2015
    Congresnummer: 12
    http://2015.msrconf.org/

    Congres

    Congres12th Working Conference on Mining Software Repositories (MSR 2015)
    Verkorte titelMSR 2015
    Land/RegioItalië
    StadFlorence
    Periode16/05/1517/05/15
    Ander12th Working Conference on Mining Software Repositories
    Internet adres

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A novel industry grade dataset for fault prediction based on model-driven developed automotive embedded software'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit