A novel clinical gland feature for detection of early Barrett’s neoplasia using volumetric laser endomicroscopy

T. Scheeve, Maarten R. Struyvenberg, Wouter L. Curvers, Jeroen de Groof, Erik J. Schoon, Jacques J.G.H.M. Bergman, F. van der Sommen, P.H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

Volumetric laser endomicroscopy (VLE) is an advanced imaging system offering a promising solution for the detection of early Barrett’s esophagus (BE) neoplasia. BE is a known precursor lesion for esophageal adenocarcinoma and is often missed during regular endoscopic surveillance of BE patients. VLE provides a circumferential scan of near-microscopic resolution of the esophageal wall up to 3-mm depth, yielding a large amount of data that is hard to interpret in real time. In a preliminary study on an automated analysis system for ex vivo VLE scans, novel quantitative image features were developed for two previously identified clinical VLE features predictive for BE neoplasia, showing promising results. This paper proposes a novel quantitative image feature for a missing third clinical VLE feature. The novel gland-based image feature called “gland statistics” (GS), is compared to several generic image analysis features and the most promising clinically-inspired feature “layer histogram” (LH). All features are evaluated on a clinical, validated data set consisting of 88 non-dysplastic BE and 34 neoplastic in vivo VLE images for eight different widely-used machine learning methods. The new clinically-inspired feature has on average superior classification accuracy (0.84 AUC) compared to the generic image analysis features (0.61 AUC), as well as comparable performance to the LH feature (0.86 AUC). Also, the LH feature achieves superior classification accuracy compared to the generic image analysis features in vivo, confirming previous ex vivo results. Combining the LH and the novel GS features provides even further improvement of the performance (0.88 AUC), showing great promise for the clinical utility of this algorithm to detect early BE neoplasia.
Originele taal-2Engels
TitelMedical Imaging 2019: Computer-Aided Diagnosis
SubtitelComputer-Aided Diagnosis
RedacteurenKensaku Mori, Horst K. Hahn
Plaats van productieBellingham
UitgeverijSPIE
Aantal pagina's6
ISBN van elektronische versie9781510625471
DOI's
StatusGepubliceerd - 13 mrt. 2019
EvenementSPIE Medical Imaging 2019 - San Diego, Verenigde Staten van Amerika
Duur: 16 feb. 201921 feb. 2019

Publicatie series

NaamProceedings of SPIE
Volume10950
ISSN van geprinte versie0277-786X

Congres

CongresSPIE Medical Imaging 2019
Land/RegioVerenigde Staten van Amerika
StadSan Diego
Periode16/02/1921/02/19

Vingerafdruk

Duik in de onderzoeksthema's van 'A novel clinical gland feature for detection of early Barrett’s neoplasia using volumetric laser endomicroscopy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit