A nonparametric kernel-based approach to Hammerstein system identification

R.S. Risuleo, G. Bottegal, H. Hjalmarsson

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

27 Citaties (SciVal)


Hammerstein systems are the series composition of a static nonlinear function and a linear dynamic system. In this work, we propose a nonparametric method for the identification of Hammerstein systems. We adopt a kernel-based approach to model the two components of the system. In particular, we model the nonlinear function and the impulse response of the linear block as Gaussian processes with suitable kernels. The kernels can be chosen to encode prior information about the nonlinear function and the system. Following the empirical Bayes approach, we estimate the posterior mean of the impulse response using estimates of the nonlinear function, of the hyperparameters, and of the noise variance. These estimates are found by maximizing the marginal likelihood of the data. This maximization problem is solved using an iterative scheme based on the expectation-conditional maximization, which is a variation of the standard expectation–maximization method for solving maximum-likelihood problems. We show the effectiveness of the proposed identification scheme in some simulation experiments.
Originele taal-2Engels
Pagina's (van-tot)234-247
Aantal pagina's14
StatusGepubliceerd - 1 nov. 2017


Duik in de onderzoeksthema's van 'A nonparametric kernel-based approach to Hammerstein system identification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit