A nonlinear flux approximation scheme for the viscous burgers equation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaties (Scopus)
1 Downloads (Pure)

Uittreksel

We present a nonlinear flux approximation scheme for the spatial discretization of the viscous Burgers equation. We derive the numerical flux function from a local two-point boundary value problem (BVP), which results in a nonlinear equation that depends on the local boundary values and the diffusion constant. The flux scheme is consistent and stable (does not introduce any spurious oscillations), as demonstrated by the numerical results.

Originele taal-2Engels
TitelFinite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems
SubtitelFVCA 8, Lille, France, June 2017
RedacteurenC. Cancès , P. Omnes
Plaats van productieDordrecht
UitgeverijSpringer
Pagina's457-465
Aantal pagina's9
ISBN van elektronische versie978-3-319-57394-6
ISBN van geprinte versie978-3-319-57393-9
DOI's
StatusGepubliceerd - 2017
Evenement8th International Symposium on Finite Volumes for Complex Applications (FVCA 2017) - Lille, Frankrijk
Duur: 12 jun 201716 jun 2017
Congresnummer: 8
https://indico.math.cnrs.fr/event/1299/overview
https://indico.math.cnrs.fr/event/1299/overview

Congres

Congres8th International Symposium on Finite Volumes for Complex Applications (FVCA 2017)
Verkorte titelFVCA 2017
LandFrankrijk
StadLille
Periode12/06/1716/06/17
Internet adres

Vingerafdruk

Approximation Scheme
Burgers Equation
Two-point Boundary Value Problem
Boundary Value
Nonlinear Equations
Discretization
Oscillation
Numerical Results

Citeer dit

Kumar, N., ten Thije Boonkkamp, J. H. M., Koren, B., & Linke, A. (2017). A nonlinear flux approximation scheme for the viscous burgers equation. In C. Cancès , & P. Omnes (editors), Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 (blz. 457-465). Dordrecht: Springer. https://doi.org/10.1007/978-3-319-57394-6_48
Kumar, N. ; ten Thije Boonkkamp, J.H.M. ; Koren, B. ; Linke, A. / A nonlinear flux approximation scheme for the viscous burgers equation. Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. redacteur / C. Cancès ; P. Omnes. Dordrecht : Springer, 2017. blz. 457-465
@inproceedings{9b45132a39404a04ab32d3e7504a6bd2,
title = "A nonlinear flux approximation scheme for the viscous burgers equation",
abstract = "We present a nonlinear flux approximation scheme for the spatial discretization of the viscous Burgers equation. We derive the numerical flux function from a local two-point boundary value problem (BVP), which results in a nonlinear equation that depends on the local boundary values and the diffusion constant. The flux scheme is consistent and stable (does not introduce any spurious oscillations), as demonstrated by the numerical results.",
keywords = "Nonlinear local BVP, Numerical flux, Viscous burgers equation",
author = "N. Kumar and {ten Thije Boonkkamp}, J.H.M. and B. Koren and A. Linke",
year = "2017",
doi = "10.1007/978-3-319-57394-6_48",
language = "English",
isbn = "978-3-319-57393-9",
pages = "457--465",
editor = "{Canc{\`e}s }, C. and P. Omnes",
booktitle = "Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems",
publisher = "Springer",
address = "Germany",

}

Kumar, N, ten Thije Boonkkamp, JHM, Koren, B & Linke, A 2017, A nonlinear flux approximation scheme for the viscous burgers equation. in C Cancès & P Omnes (redactie), Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. Springer, Dordrecht, blz. 457-465, 8th International Symposium on Finite Volumes for Complex Applications (FVCA 2017), Lille, Frankrijk, 12/06/17. https://doi.org/10.1007/978-3-319-57394-6_48

A nonlinear flux approximation scheme for the viscous burgers equation. / Kumar, N.; ten Thije Boonkkamp, J.H.M.; Koren, B.; Linke, A.

Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. redactie / C. Cancès ; P. Omnes. Dordrecht : Springer, 2017. blz. 457-465.

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

TY - GEN

T1 - A nonlinear flux approximation scheme for the viscous burgers equation

AU - Kumar, N.

AU - ten Thije Boonkkamp, J.H.M.

AU - Koren, B.

AU - Linke, A.

PY - 2017

Y1 - 2017

N2 - We present a nonlinear flux approximation scheme for the spatial discretization of the viscous Burgers equation. We derive the numerical flux function from a local two-point boundary value problem (BVP), which results in a nonlinear equation that depends on the local boundary values and the diffusion constant. The flux scheme is consistent and stable (does not introduce any spurious oscillations), as demonstrated by the numerical results.

AB - We present a nonlinear flux approximation scheme for the spatial discretization of the viscous Burgers equation. We derive the numerical flux function from a local two-point boundary value problem (BVP), which results in a nonlinear equation that depends on the local boundary values and the diffusion constant. The flux scheme is consistent and stable (does not introduce any spurious oscillations), as demonstrated by the numerical results.

KW - Nonlinear local BVP

KW - Numerical flux

KW - Viscous burgers equation

UR - http://www.scopus.com/inward/record.url?scp=85020449593&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-57394-6_48

DO - 10.1007/978-3-319-57394-6_48

M3 - Conference contribution

AN - SCOPUS:85020449593

SN - 978-3-319-57393-9

SP - 457

EP - 465

BT - Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems

A2 - Cancès , C.

A2 - Omnes, P.

PB - Springer

CY - Dordrecht

ER -

Kumar N, ten Thije Boonkkamp JHM, Koren B, Linke A. A nonlinear flux approximation scheme for the viscous burgers equation. In Cancès C, Omnes P, redacteurs, Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. Dordrecht: Springer. 2017. blz. 457-465 https://doi.org/10.1007/978-3-319-57394-6_48