Samenvatting
We present a nonlinear flux approximation scheme for the spatial discretization of the viscous Burgers equation. We derive the numerical flux function from a local two-point boundary value problem (BVP), which results in a nonlinear equation that depends on the local boundary values and the diffusion constant. The flux scheme is consistent and stable (does not introduce any spurious oscillations), as demonstrated by the numerical results.
Originele taal-2 | Engels |
---|---|
Titel | Finite Volumes for Complex Applications VIII— Hyperbolic, Elliptic and Parabolic Problems |
Subtitel | FVCA 8, Lille, France, June 2017 |
Redacteuren | C. Cancès , P. Omnes |
Plaats van productie | Dordrecht |
Uitgeverij | Springer |
Pagina's | 457-465 |
Aantal pagina's | 9 |
ISBN van elektronische versie | 978-3-319-57394-6 |
ISBN van geprinte versie | 978-3-319-57393-9 |
DOI's | |
Status | Gepubliceerd - 2017 |
Evenement | 8th International Symposium on Finite Volumes for Complex Applications (FVCA 2017) - Lille, Frankrijk Duur: 12 jun. 2017 → 16 jun. 2017 Congresnummer: 8 https://indico.math.cnrs.fr/event/1299/overview https://indico.math.cnrs.fr/event/1299/overview |
Congres
Congres | 8th International Symposium on Finite Volumes for Complex Applications (FVCA 2017) |
---|---|
Verkorte titel | FVCA 2017 |
Land/Regio | Frankrijk |
Stad | Lille |
Periode | 12/06/17 → 16/06/17 |
Internet adres |