A new family of extended generalized quadrangles

A. Del Fra, D. Pasechnik, A. Pasini

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)

Samenvatting

For every hyperovalOofPG(2,q) (qeven), we construct an extended generalized quadrangle with point-residues isomorphic to the generalized quadrangleT*2(O) of order(q-1, q+1).These extended generalized quadrangles are flag-transitive only whenq=2 or 4. Whenq=2 we obtain a thin-lined polar space with four planes on every line. Whenq=4 we obtain one of the geometries discovered by Yoshiara [28]. That geometry is produced in [28] as a quotient of another one, which is simply connected, constructed in [28] by amalgamation of parabolics. In this paper we also give a ‘topological’ construction of that simply connected geometry. *1 In memory of Giuseppe Tallini.
Originele taal-2Engels
Pagina's (van-tot)155-169
Aantal pagina's15
TijdschriftEuropean Journal of Combinatorics
Volume18
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1997

Vingerafdruk

Duik in de onderzoeksthema's van 'A new family of extended generalized quadrangles'. Samen vormen ze een unieke vingerafdruk.

Citeer dit