A new class of irreducible pentanomials for polynomial-based multipliers in binary fields

Gustavo Banegas (Corresponding author), Ricardo Custódio, Daniel Panario

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
10 Downloads (Pure)


We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+ x b+ x c+ 1. Let m= 2 b+ c and use f to define the finite field extension of degree m. We give the exact number of operations required for computing the reduction modulo f. We also provide a multiplier based on Karatsuba algorithm in F 2[x] combined with our reduction process. We give the total cost of the multiplier and found that the bit-parallel multiplier defined by this new class of polynomials has improved XOR and AND complexity. Our multiplier has comparable time delay when compared to other multipliers based on Karatsuba algorithm.

Originele taal-2Engels
Pagina's (van-tot)359–373
Aantal pagina's15
TijdschriftJournal of Cryptographic Engineering
Nummer van het tijdschrift4
Vroegere onlinedatum9 nov 2018
StatusGepubliceerd - 1 nov 2019


Citeer dit