A native operator for process discovery

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)
2 Downloads (Pure)


The goal of process mining is to gain insights into operational processes through the analysis of events recorded by information systems. Typically, this is done in three phases. Firstly, events are extracted from a data store into an event log. Secondly, an intermediate structure is built in memory and finally, this intermediate structure is converted into a process model or other analysis results. In this paper, we propose a native SQL operator for direct process discovery on relational databases. We merge steps 1 and 2 by defining a native operator for the simplest form of the intermediate structure, called the “directly follows relation”. We evaluate our work on big event data and the experimental results show that it performs faster than the state-of-the-art of database approaches.

Originele taal-2Engels
TitelDatabase and Expert Systems Applications - 29th International Conference, DEXA 2018, Proceedings
RedacteurenGünther Pernul, Sven Hartmann, Hui Ma, Abdelkader Hameurlain, Roland R. Wagner
Aantal pagina's9
ISBN van geprinte versie9783319988115
StatusGepubliceerd - 1 jan 2018
Evenement29th International Conference on Database and Expert Systems Applications, (DEXA2018) - Regensburg, Duitsland
Duur: 3 sep 20186 sep 2018

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11030 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349


Congres29th International Conference on Database and Expert Systems Applications, (DEXA2018)
Verkorte titelDEXA2018
Internet adres

Vingerafdruk Duik in de onderzoeksthema's van 'A native operator for process discovery'. Samen vormen ze een unieke vingerafdruk.

Citeer dit