A multirate time stepping strategy for parabolic PDE

V. Savcenco, W. Hundsdorfer, J.G. Verwer

    Onderzoeksoutput: Boek/rapportRapportAcademic

    100 Downloads (Pure)

    Samenvatting

    To solve PDE problems with different time scales that are localized in space, multirate time stepping is examined. We introduce a self-adjusting multirate time stepping strategy, in which the step size at a particular grid point is determined by the local temporal variation of the solution, instead of using a minimal single step size for the whole spatial domain. The approach is based on the `method of lines', where first a spatial discretization is performed, together with local error estimates for the resulting semi-discret system. We will primarily consider implicit time stepping methods, suitable for parabolic problems. Our multirate strategy is tested on several parabolic problems in one spatial dimension (1D)
    Originele taal-2Engels
    Plaats van productieAmsterdam
    UitgeverijCentrum voor Wiskunde en Informatica
    Aantal pagina's19
    StatusGepubliceerd - 2005

    Publicatie series

    NaamCWI report. MAS-E
    Volume0516
    ISSN van geprinte versie1386-3703

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A multirate time stepping strategy for parabolic PDE'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit