A multi-component lattice Boltzmann approach to study the causality of plastic events

Pinaki Kumar, Roberto Benzi, Jeannot Trampert, Federico Toschi (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

Using a multi-component lattice Boltzmann (LB) model, we perform fluid kinetic simulations of confined and concentrated emulsions. The system presents the phenomenology of soft-glassy materials, including a Herschel–Bulkley rheology, yield stress, ageing and long relaxation time scales. Shearing the emulsion in a Couette cell below the yield stress results in plastic topological re-arrangement events which follow established empirical seismic statistical scaling laws, making this system a good candidate to study the physics of earthquakes. One characteristic of this model is the tendency for events to occur in avalanche clusters, with larger events, triggering subsequent re-arrangements. While seismologists have developed statistical tools to study correlations between events, a process to confirm causality remains elusive. We present here, a modification to our LB model, involving small, fast vibrations applied to individual droplets, effectively a macroscopic forcing, which results in the arrest of the topological plastic re-arrangements. This technique provides an excellent tool for identifying causality in plastic event clusters by examining the evolution of the dynamics after ‘stopping’ an event, and then checking which subsequent events disappear.
This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.
Originele taal-2Engels
Artikelnummer20190403
Aantal pagina's11
TijdschriftPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume378
Nummer van het tijdschrift2175
DOI's
StatusGepubliceerd - 22 jun 2020

Vingerafdruk Duik in de onderzoeksthema's van 'A multi-component lattice Boltzmann approach to study the causality of plastic events'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit