Samenvatting
Generalized Burniat surfaces are surfaces of general type with p g= q and Euler number e= 6 obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409.1285v2). This implies that the Chow motives of all of these surfaces are finite-dimensional in the sense of Kimura.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 377-387 |
Aantal pagina's | 11 |
Tijdschrift | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg |
Volume | 88 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Gepubliceerd - 1 okt. 2018 |