A monotone, higher-order accurate, fixed-grid finite-volume method for advection problems with moving boundaries

Y. Hassen, B. Koren

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

38 Downloads (Pure)

Samenvatting

In this paper, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a ¿xed Cartesian grid. The essence of the present method is that speci¿c ¿uxes in the vicinity of a moving body are computed in an intelligent way such that they accurately accommodate the boundary conditions valid on the moving body. The ¿rst results obtained are very accurate, without requiring much computational overhead. It is anticipated that the method can be easily and successfully extended to real ¿uid-¿ow equations.
Originele taal-2Engels
TitelProceedings Fourth International Conference on Advanced Computational Methods in Engineering (ACOMEN 2008, Liège, Belgium, May 26-28, 2008)
RedacteurenM. Hogge, R. Van Keer, L. Noels, L. Stainier, J.-P. Ponthot, J.-F. Remacle, E. Dick
Plaats van productieLiège
UitgeverijUniversité de Liège
Pagina's1-10
StatusGepubliceerd - 2008
EvenementFourth International Conference on Advanced Computational Methods in Engineering -
Duur: 26 mei 200828 mei 2008

Congres

CongresFourth International Conference on Advanced Computational Methods in Engineering
Periode26/05/0828/05/08

Vingerafdruk Duik in de onderzoeksthema's van 'A monotone, higher-order accurate, fixed-grid finite-volume method for advection problems with moving boundaries'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Hassen, Y., & Koren, B. (2008). A monotone, higher-order accurate, fixed-grid finite-volume method for advection problems with moving boundaries. In M. Hogge, R. Van Keer, L. Noels, L. Stainier, J-P. Ponthot, J-F. Remacle, & E. Dick (editors), Proceedings Fourth International Conference on Advanced Computational Methods in Engineering (ACOMEN 2008, Liège, Belgium, May 26-28, 2008) (blz. 1-10). Université de Liège.