A maximum entropy approach to learn Bayesian networks from incomplete data

Giorgio Corani, Cassio P. de Campos

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)


This chapter addresses the problem of estimating the parameters of a Bayesian network from incomplete data. This is a hard problem, which for computational reasons cannot be effectively tackled by a full Bayesian approach. The work around is to search for the estimate with maximum posterior probability. This is usually done by selecting the highest posterior probability estimate among those found by multiple runs of Expectation-Maximization with distinct starting points. However, many local maxima characterize the posterior probability function, and several of them have similar high probability. We argue that high probability is necessary but not sufficient in order to obtain good estimates.We present an approach based on maximum entropy to address this problem and describe a simple and effective way to implement it. Experiments show that our approach produces significantly better estimates than the most commonly used method.

Originele taal-2Engels
TitelInterdisciplinary Bayesian Statistics, EBEB 2014
RedacteurenAdriano Polpo, Francisco Louzada, Marcelo Lauretto, Julio Michael Stern, Laura Letícia Ramos Rifo
Aantal pagina's14
ISBN van elektronische versie9783319124537
StatusGepubliceerd - 1 jan 2015
Extern gepubliceerdJa
Evenement12th Brazilian Meeting on Bayesian Statistics, EBEB 2014 - Atibaia, Brazilië
Duur: 10 mrt 201414 mrt 2014


Congres12th Brazilian Meeting on Bayesian Statistics, EBEB 2014


Duik in de onderzoeksthema's van 'A maximum entropy approach to learn Bayesian networks from incomplete data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit