A matrix-geometric analysis of queueing systems with periodic service interruptions

M.J.A. Eenige, van, J.A.C. Resing, J. Wal, van der

Onderzoeksoutput: Boek/rapportRapportAcademic

42 Downloads (Pure)

Samenvatting

In this paper, two queueing models with periodic (cyclic) service interruptions are studied, one in discrete time and one in continuous time. For both models, the matrix-geometric approach is used to obtain the equilibrium distribution of the number of customers in the system. From this equilibrium distribution, one can compute the stationary sojourn time distribution and study the effects of interruptions on the probability a customer receives service before some specific due date. Examples show the influence on this probability of balancing interruptions over a cycle. Keywords: Queueing systems, periodic service interruptions, matrix-geometric approach, sojourn times, tail probabilities, due dates.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's17
StatusGepubliceerd - 1993

Publicatie series

NaamMemorandum COSOR
Volume9332
ISSN van geprinte versie0926-4493

Vingerafdruk Duik in de onderzoeksthema's van 'A matrix-geometric analysis of queueing systems with periodic service interruptions'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Eenige, van, M. J. A., Resing, J. A. C., & Wal, van der, J. (1993). A matrix-geometric analysis of queueing systems with periodic service interruptions. (Memorandum COSOR; Vol. 9332). Technische Universiteit Eindhoven.