Samenvatting
Physics-guided neural networks (PGNNs) enable accurate identification of inverse system dynamics by effectively embedding a known physical model within a neural network (NN), and thereby achieve high performance when implemented as feedforward controllers. However, training PGNNs using existing NN toolboxes is complicated. Therefore, this paper presents a MATLAB toolbox that systematically implements, trains, and validates PGNNs. Dedicated functions implement recent results that have been proposed in literature, i.e., we ensure that the PGNN converges to a value of the cost function that is strictly upperbounded by the value obtained when using only the physical model, while also imposing a form of graceful degradation when the trained PGNN is used on data that was not present in the training data. The toolbox is available at:https://github.com/mbolderman/PGNN-Toolbox/
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 4068-4073 |
Aantal pagina's | 6 |
Tijdschrift | IFAC-PapersOnLine |
Volume | 56 |
Nummer van het tijdschrift | 2 |
DOI's | |
Status | Gepubliceerd - 1 jul. 2023 |
Evenement | 22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan Duur: 9 jul. 2023 → 14 jul. 2023 Congresnummer: 22 https://www.ifac2023.org/ |
Financiering
This work is part of the research programme with project number 17973, which is (partly) financed by the Dutch Research Council (NWO).
Financiers | Financiernummer |
---|---|
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |