A machine learning-based detection technique for optical fiber nonlinearity mitigation

Abdelkerim Amari (Corresponding author), Xiang Lin, Octavia A. Dobre, Ramachandran Venkatesan, Alex Alvarado

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)
62 Downloads (Pure)


We investigate the performance of a machine learning classi?cation technique, called the Parzen window, to mitigate the ?ber nonlinearity in the context of dispersion managed and dispersion unmanaged systems. The technique is applied for detection at the receiver side, and deals with the non-Gaussian nonlinear effects by designing improved decision boundaries. We also propose a two-stage mitigation technique using digital back propagation and Parzen window for dispersion unmanaged systems. In this case, digital back propagation compensates for the deterministic nonlinearity and the Parzen window deals with the stochastic nonlinear signal-noise interactions, which are not taken into account by digital back propagation. A performance improvement up to 0.4 dB in terms of Q factor is observed.
Originele taal-2Engels
Pagina's (van-tot)627-630
Aantal pagina's4
TijdschriftIEEE Photonics Technology Letters
Nummer van het tijdschrift8
StatusGepubliceerd - 15 apr 2019


Duik in de onderzoeksthema's van 'A machine learning-based detection technique for optical fiber nonlinearity mitigation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit