A locality aware convolutional neural networks accelerator

R. Shi, Z. Xu, Z. Sun, M.C.J. Peemen, A. Li, H. Corporaal, D. Wu

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)

Samenvatting

The advantages of Convolutional Neural Networks (CNNs) with respect to traditional methods for visual pattern recognition have changed the field of machine vision. The main issue that hinders broad adoption of this technique is the massive computing workload in CNN that prevents real-time implementation on low-power embedded platforms. Recently, several dedicated solutions have been proposed to improve the energy efficiency and throughput, nevertheless the huge amount of data transfer involved in the processing is still a challenging issue. This work proposes a new CNN accelerator exploiting a novel memory access scheme which significantly improves data locality in CNN related processing. With this scheme, external memory access is reduced by 50% while achieving similar or even better throughput. The accelerator is implemented using 28nm CMOS technology. Implementation results show that the accelerator achieves a performance of 102GOp/s @800MHz while consuming 0.303mm2 in silicon area. Power simulation shows that the dynamic power of the accelerator is 68mW. Its flexibility is demonstrated by running various different CNN benchmarks.

Originele taal-2Engels
TitelProceedings - 18th Euromicro Conference on Digital System Design, DSD 2015
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's591-598
Aantal pagina's8
ISBN van elektronische versie978-1-4673-8035-5
DOI's
StatusGepubliceerd - 20 okt. 2015
Evenement18th Euromicro Conference on Digital System Design (DSD 2015) - Funchal, Portugal
Duur: 26 aug. 201528 aug. 2015
Congresnummer: 18
https://paginas.fe.up.pt/~dsd-seaa-2015/dsd2015/

Congres

Congres18th Euromicro Conference on Digital System Design (DSD 2015)
Verkorte titelDSD 2015
Land/RegioPortugal
StadFunchal
Periode26/08/1528/08/15
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'A locality aware convolutional neural networks accelerator'. Samen vormen ze een unieke vingerafdruk.

Citeer dit