A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

H.J.S. Dorren

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
75 Downloads (Pure)

Samenvatting

It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of (nonlinear) transformations to the solution of the linear differential equation. It is also shown that similar concepts apply to the nonlinear Schrödinger equation. The role of symmetry is discussed. Finally, the procedure which is followed in the one-dimensional cases is successfully applied to find special solutions of higher-dimensional nonlinear partial differential equations.
Originele taal-2Engels
Pagina's (van-tot)3711-3729
Aantal pagina's19
TijdschriftJournal of Mathematical Physics
Volume39
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 1998

Vingerafdruk Duik in de onderzoeksthema's van 'A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit