A linear image reconstruction framework based on Sobolev type inner products

B.J. Janssen, F.M.W. Kanters, R. Duits, L.M.J. Florack, B.M. Haar Romenij, ter

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Exploration of information content of features that are present in images has led to the development of several reconstruction algorithms. These algorithms aim for a reconstruction from the features that is visually close to the image from which the features are extracted. Degrees of freedom that are not fixed by the constraints are disambiguated with the help of a so-called prior (i.e. a user defined model). We propose a linear reconstruction framework that generalises a previously proposed scheme. As an example we propose a specific prior and apply it to the reconstruction from singular point s. The reconstruction is visually more attractive and has a smaller -error than the previously proposed linear methods.
Originele taal-2Engels
TitelScale space and PDE methods in computer vision : 5th international conference, Scale-space 2005, Hofgeismar, germany, April 7-9, 2005 : proceedings
RedacteurenR. Kimmel, N.A. Sochen, J. Weickert
Plaats van productieBerlin
UitgeverijSpringer
Pagina's85-96
ISBN van geprinte versie3-540-25547-8
DOI's
StatusGepubliceerd - 2005

Publicatie series

NaamLecture Notes in Computer Science
Volume3459
ISSN van geprinte versie0302-9743

Vingerafdruk Duik in de onderzoeksthema's van 'A linear image reconstruction framework based on Sobolev type inner products'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Janssen, B. J., Kanters, F. M. W., Duits, R., Florack, L. M. J., & Haar Romenij, ter, B. M. (2005). A linear image reconstruction framework based on Sobolev type inner products. In R. Kimmel, N. A. Sochen, & J. Weickert (editors), Scale space and PDE methods in computer vision : 5th international conference, Scale-space 2005, Hofgeismar, germany, April 7-9, 2005 : proceedings (blz. 85-96). (Lecture Notes in Computer Science; Vol. 3459). Springer. https://doi.org/10.1007/11408031_8