A least-squares method for a Monge-Ampère equation with non-quadratic cost function applied to optical design

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
3 Downloads (Pure)

Samenvatting

Freeform optical surfaces can transfer a given light distribution of the source into a desired distribution at the target. Freeform optical design problems can be formulated as a Monge-Ampère type differential equation with transport boundary condition, using properties of geometrical optics, conservation of energy, and the theory of optimal mass transport. We present a least-squares method to compute freeform lens surfaces corresponding to a non-quadratic cost function. The numerical algorithm is capable to compute both convex and concave surfaces.

Originele taal-2Engels
TitelNumerical Mathematics and Advanced Applications ENUMATH 2017
RedacteurenFlorin Adrian Radu, Kundan Kumar, Inga Berre, Jan Martin Nordbotten, Iuliu Sorin Pop
Plaats van productieCham
UitgeverijSpringer
Pagina's301-309
Aantal pagina's9
ISBN van elektronische versie978-3-319-96415-7
ISBN van geprinte versie978-3-319-96414-0
DOI's
StatusGepubliceerd - 1 jan. 2019
EvenementEuropean Conference on Numerical Mathematics and Advanced Applications : ENUMATH 2017 - Voss, Noorwegen
Duur: 25 sep. 201729 sep. 2017

Publicatie series

NaamLecture Notes in Computational Science and Engineering
Volume126
ISSN van geprinte versie1439-7358

Congres

CongresEuropean Conference on Numerical Mathematics and Advanced Applications
Verkorte titelENUMATH 2017
Land/RegioNoorwegen
StadVoss
Periode25/09/1729/09/17

Vingerafdruk

Duik in de onderzoeksthema's van 'A least-squares method for a Monge-Ampère equation with non-quadratic cost function applied to optical design'. Samen vormen ze een unieke vingerafdruk.

Citeer dit