A learning-based MAC for energy efficient wireless sensor networks

S. Galzarano, G. Fortino, A. Liotta

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

20 Citaten (Scopus)

Samenvatting

Designing energy-efficient communication protocols is one of the main challenges in wireless sensor networks. This work presents an adaptive radio scheduling schema employing a reinforcement learning algorithm for reducing the energy consumption while preserving the other network performances. By means of a decentralized on-line approach, each nodes determines the most beneficial radio schedule by dynamically adapting to its own traffic load and to the neighbors’ communication activities. We compare our approach with other learning-based MAC protocols as well as conventional MAC approaches and show that, under different simulating scenarios and traffic conditions, our protocol achieves better trade-offs in terms of energy consumption, latency and throughput.
Originele taal-2Engels
TitelProceedings of the 7th International Conference on Internet and Distributed Computing Systems, IDCS 2014, September 22-24, 2014, Calabria, Italy
RedacteurenG. Fortino, G. Di Fatta, W. Li, S. Ochoa, A. Cuzzocrea, M. Pathan
Plaats van productieBerlin
UitgeverijSpringer
Pagina's396-406
ISBN van geprinte versie978-3-319-11691-4
DOI's
StatusGepubliceerd - 2014

Publicatie series

NaamLecture Notes in Computer Science
Volume8729
ISSN van geprinte versie0302-9743

Vingerafdruk

Duik in de onderzoeksthema's van 'A learning-based MAC for energy efficient wireless sensor networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit