A Jacobi-Davidson type method for the two-parameter eigenvalue problem

M.E. Hochstenbach, T. Kosir, Bor Plestenjak

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    29 Citaten (Scopus)


    We present a new numerical method for computing selected eigenvalues and eigenvectors of the two-parameter eigenvalue problem. The method does not require good initial approximations and is able to tackle large problems that are too expensive for methods that compute all eigenvalues. The new method uses a two-sided approach and is a generalization of the Jacobi--Davidson type method for right definite two-parameter eigenvalue problems [M. E. Hochstenbach and B. Plestenjak, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 392--410]. Here we consider the much wider class of nonsingular problems. In each step we first compute Petrov triples of a small projected two-parameter eigenvalue problem and then expand the left and right search spaces using approximate solutions to appropriate correction equations. Using a selection technique, it is possible to compute more than one eigenpair. Some numerical examples are presented.
    Originele taal-2Engels
    Pagina's (van-tot)477-497
    TijdschriftSIAM Journal on Matrix Analysis and Applications
    Nummer van het tijdschrift2
    StatusGepubliceerd - 2005

    Vingerafdruk Duik in de onderzoeksthema's van 'A Jacobi-Davidson type method for the two-parameter eigenvalue problem'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit