A hybrid genetic algorithm for parallel machine scheduling at semiconductor back-end production

J. Adan, A. Akcay, J. Stokkermans, R. van den Dobbelsteen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)
11 Downloads (Pure)

Samenvatting

This paper addresses batch scheduling at a back-end semiconductor plant of Nexperia. This complex manufacturing environment is characterized by a large product and batch size variety, numerous parallel machines with large capacity differences, sequence and machine dependent setup times and machine eligibility constraints. A hybrid genetic algorithm is proposed to improve the scheduling process, the main features of which are a local search enhanced crossover mechanism, two additional fast local search procedures and a user-controlled multi-objective fitness function. Testing with real-life production data shows that this multi-objective approach can strike the desired balance between production time, setup time and tardiness, yielding high-quality practically feasible production schedules.

Originele taal-2Engels
Titel28th International Conference on Automated Planning and Scheduling, ICAPS 2018
Pagina's298-302
Aantal pagina's5
StatusGepubliceerd - 1 jan. 2018
Evenement28th International Conference on Automated Planning and Scheduling, ICAPS 2018 - Delft, Nederland
Duur: 24 jun. 201829 jun. 2018

Congres

Congres28th International Conference on Automated Planning and Scheduling, ICAPS 2018
Land/RegioNederland
StadDelft
Periode24/06/1829/06/18

Vingerafdruk

Duik in de onderzoeksthema's van 'A hybrid genetic algorithm for parallel machine scheduling at semiconductor back-end production'. Samen vormen ze een unieke vingerafdruk.

Citeer dit