A hybrid DEIM and leverage scores based method for CUR index selection

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

9 Citaten (Scopus)

Samenvatting

The discrete empirical interpolation method (DEIM) may be used as an index selection strategy for formulating a CUR factorization. A notable drawback of the original DEIM algorithm is that the number of column or row indices that can be selected is limited to the number of input singular vectors. We propose a new variant of DEIM, which we call L-DEIM, a combination of the strength of deterministic leverage scores and DEIM. This method allows for the selection of a number of indices greater than the number of input singular vectors. Since DEIM requires singular vectors as input matrices, L-DEIM is particularly attractive for example in big data problems when computing a rank-k SVD approximation is expensive even for moderately small k since it uses a lower-rank SVD approximation instead of the full rank-k SVD. We empirically demonstrate the performance of L-DEIM, which despite its efficiency, may achieve comparable results to the original DEIM and even better approximations than some state-of-the-art methods.
Originele taal-2Engels
TitelECMI 2021: Progress in Industrial Mathematics at ECMI 2021
RedacteurenMatthias Ehrhardt, Michael Günther
UitgeverijSpringer Nature
Pagina's147–153
Aantal pagina's7
ISBN van elektronische versie978-3-031-11818-0
ISBN van geprinte versie978-3-031-11817-3
DOI's
StatusGepubliceerd - 26 nov. 2022

Publicatie series

NaamMathematics in Industry
Volume39
ISSN van geprinte versie1612-3956
ISSN van elektronische versie2198-3283

Financiering

Acknowledgments This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 812912.

Vingerafdruk

Duik in de onderzoeksthema's van 'A hybrid DEIM and leverage scores based method for CUR index selection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit