A Hybrid Deep Learning Pipeline for Improved Ultrasound Localization Microscopy

Tristan S.W. Stevens, Elizabeth B. Herbst, Ben Luijten, Boudewine Ossenkoppele, Thierry J. Voskuil, Shiying Wang, Jihwan Youn, Claudia Errico, Massimo Mischi, Nicola Pezzotti, Ruud J.G. van Sloun

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

The image quality of ultrasound localization microscopy (ULM) images is driven by the ability to accurately detect and track the location of microbubbles (MBs) in vascular networks. This task becomes increasingly challenging in imaging environments with high MB concentrations and low signal-to-noise ratios, making it difficult to differentiate and localize individual MBs. Recent developments in deep learning (DL) have demonstrated significant improvements over conventional methods but depend on vast amounts of realistic training data with the corresponding ground truth labels, which are difficult to obtain. The alternative, simulated data, in turn, poses challenges in generalizability of the method. In this work, we present a hybrid pipeline for ULM that comprises data generation, localization, and tracking. It combines the current state-of-the-art, utilizing both conventional and DL techniques. We show that using this approach, we can create high-quality velocity maps while being able to generalize well across different domains.
Originele taal-2Engels
Titel2022 IEEE International Ultrasonics Symposium (IUS)
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's4
ISBN van elektronische versie978-1-6654-6657-8
ISBN van geprinte versie978-1-6654-7813-7
DOI's
StatusGepubliceerd - 1 dec. 2022
Evenement2022 IEEE International Ultrasonics Symposium, IUS 2022 - Venice, Italië
Duur: 10 okt. 202213 okt. 2022
https://2022.ieee-ius.org

Congres

Congres2022 IEEE International Ultrasonics Symposium, IUS 2022
Verkorte titelIUS 2022
Land/RegioItalië
StadVenice
Periode10/10/2213/10/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'A Hybrid Deep Learning Pipeline for Improved Ultrasound Localization Microscopy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit