A homogeneous Rayleigh quotient with applications in gradient methods

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
120 Downloads (Pure)

Samenvatting

Given an approximate eigenvector, its (standard) Rayleigh quotient and harmonic Rayleigh quotient are two well-known approximations of the corresponding eigenvalue. We propose a new type of Rayleigh quotient, the homogeneous Rayleigh quotient, and analyze its sensitivity with respect to perturbations in the eigenvector. Furthermore, we study the inverse of this homogeneous Rayleigh quotient as stepsize for the gradient method for unconstrained optimization.
The notion and basic properties are also extended to the generalized eigenvalue problem.
Originele taal-2Engels
Artikelnummer115440
Aantal pagina's15
TijdschriftJournal of Computational and Applied Mathematics
Volume437
DOI's
StatusGepubliceerd - feb. 2024

Financiering

We are grateful to the referees for their very useful suggestions which considerably improved the quality of the paper. This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 812912. We are grateful to the referees for their very useful suggestions which considerably improved the quality of the paper. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 812912 .

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme
H2020 Marie Skłodowska-Curie Actions812912
European Union’s Horizon Europe research and innovation programme

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A homogeneous Rayleigh quotient with applications in gradient methods'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit