Samenvatting
A novel model reduction methodology is proposed to approximate large-scale nonlinear dynamical systems. The methodology amounts to finding computationally efficient substitute models for an uncertain nonlinear system. Model uncertainty is incorporated by viewing the system as a grey-box or hybrid model with a mechanistic (first-principle) component and an empirical (black-box) component. The mechanistic part is approximated using proper orthogonal decomposition. Subsequently, the empirical part is identified by parameter estimation using the reduced order mechanistic part. As a consequence, the parameter estimation is computationally more efficient. An example with a distributed parameter system is provided.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 239-244 |
Aantal pagina's | 6 |
Tijdschrift | IFAC Proceedings Volumes |
Volume | 40 |
Nummer van het tijdschrift | 5 |
DOI's | |
Status | Gepubliceerd - 1 jan. 2007 |
Evenement | 8th IFAC International Symposium on Dynamics and Control of Process Systems, DYCOPS 2007 - Cancun, Mexico Duur: 4 jun. 2007 → 6 jun. 2007 Congresnummer: 8 |