A grey-box modeling approach for the reduction of nonlinear systems

Reinout Romijn, Leyla Özkan, Siep Weiland, Jobert Ludlage, Wolfgang Marquardt

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

2 Citaten (Scopus)

Samenvatting

A novel model reduction methodology is proposed to approximate large-scale nonlinear dynamical systems. The methodology amounts to finding computationally efficient substitute models for an uncertain nonlinear system. Model uncertainty is incorporated by viewing the system as a grey-box or hybrid model with a mechanistic (first-principle) component and an empirical (black-box) component. The mechanistic part is approximated using proper orthogonal decomposition. Subsequently, the empirical part is identified by parameter estimation using the reduced order mechanistic part. As a consequence, the parameter estimation is computationally more efficient. An example with a distributed parameter system is provided.

Originele taal-2Engels
Pagina's (van-tot)239-244
Aantal pagina's6
TijdschriftIFAC Proceedings Volumes
Volume40
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - 1 jan. 2007
Evenement8th IFAC International Symposium on Dynamics and Control of Process Systems, DYCOPS 2007 - Cancun, Mexico
Duur: 4 jun. 20076 jun. 2007
Congresnummer: 8

Vingerafdruk

Duik in de onderzoeksthema's van 'A grey-box modeling approach for the reduction of nonlinear systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit