A ggraph-based method to introduce approximations in kinetic networks

K.M. Nauta, S. Weiland, A.C.P.M. Backx

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Simplification of models of complex kinetic networks is essential for purposes of optimization and control. A common technique for complexity reduction is to use equilibrium assumptions for reactions and species to eliminate species from the network. For models of larger kinetic networks and multiple equilibrium relations, the manifold that characterizes the response of the model subject to the equilibrium relations can only be approximated. We introduce a greedy-type algorithm to select a set of equilibrium relations in such a manner this manifold can be expressed analytically. This algorithm uses the interaction graph that represents the dependencies between equilibrium relations. If the equilibrium relations are selected such that the interdependency is minimized, analytical expressions for decoupled groups of equilibrium relations can be found. An objective function characterizes the trade-off between the order, the accuracy and the complexity of the reduced model. This objective function is maximized through the selection of equilibrium relations.
Originele taal-2Engels
Titel2007 46th IEEE Conference on Decision and Control
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3345-3350
Aantal pagina's6
ISBN van geprinte versie978-1-4244-1497-0
DOI's
StatusGepubliceerd - 2007
Evenement46th IEEE Conference on Decision and Control (CDC 2007) - New Orleans, Verenigde Staten van Amerika
Duur: 12 dec 200714 dec 2007
Congresnummer: 46

Congres

Congres46th IEEE Conference on Decision and Control (CDC 2007)
Verkorte titelCDC 2007
Land/RegioVerenigde Staten van Amerika
StadNew Orleans
Periode12/12/0714/12/07
AnderIEEE Conference on Decision and Control

Vingerafdruk

Duik in de onderzoeksthema's van 'A ggraph-based method to introduce approximations in kinetic networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit