TY - JOUR
T1 - A Gevrey space characterization of certain Gelfand-Shilov spaces $S\sp{\beta}\sb{\alpha}$
AU - Elst, ter, A.F.M.
AU - Eijndhoven, van, S.J.L.
PY - 1989
Y1 - 1989
N2 - Let p,q and let =p,q with p,q = max {l/p, l/q}, p1, = 1/p, and 1,q= 1/q, p,q>l. In this paper it is proved that there exist symmetric differential operators Ap,q in L2() such that the Gelfand-Shilov space Spp is equal to the Gevrey space of order 2pq relative to Ap,q.
AB - Let p,q and let =p,q with p,q = max {l/p, l/q}, p1, = 1/p, and 1,q= 1/q, p,q>l. In this paper it is proved that there exist symmetric differential operators Ap,q in L2() such that the Gelfand-Shilov space Spp is equal to the Gevrey space of order 2pq relative to Ap,q.
U2 - 10.1016/S1385-7258(89)80025-3
DO - 10.1016/S1385-7258(89)80025-3
M3 - Article
SN - 1385-7258
VL - 92
SP - 175
EP - 184
JO - Indagationes Mathematicae (Proceedings)
JF - Indagationes Mathematicae (Proceedings)
IS - 2
ER -