Samenvatting
A nonzero element $x$ in a Lie algebra $\mathfrak{g}$ with Lie product $[ , ]$ is called extremal if $[x,[x,y]]$ is a multiple of $x$ for all $y$. In this paper we characterize the (finitary) symplectic Lie algebras as simple Lie algebras generated by their extremal elements satisying the condition that any two noncommuting extremal elements $x,y$ generate an $\mathfrak{sl}_2$ and any third extremal element $z$ commutes with at least one extremal element in this $\mathfrak{sl}_2$.
Originele taal-2 | Engels |
---|---|
Artikelnummer | 1707.02095 |
Aantal pagina's | 28 |
Tijdschrift | arXiv |
Volume | 2017 |
Status | Gepubliceerd - 7 jul. 2017 |
Trefwoorden
- math.RA