A Framework for Privacy-Preserving White-Box Anomaly Detection using a Lattice-Based Access Control

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Privacy concerns are amongst the core issues that will constrain the adoption of distributed anomaly detection. Indeed, when outsourcing anomaly detection, i.e. with a party other than the data owner running the detection, confidential or private aspects of the observed data may need protection. Some privacy-enhancing function is usually employed. Because of the impact that this restriction causes in the creation of explainable alerts, finding mechanisms to balance the trade-off between privacy and usefulness has become increasingly important. Due to this motivation, in this paper, a privacy-preserving white-box anomaly detection framework is presented to facilitate matching the compatibility between service requirements and privacy restrictions of an user by using an access control based on a lattice of privacy protection levels. Our framework allows entities to verify these trade-offs by specifying required protection at the level of features. We evaluate the framework in a real-world scenario within the e-health setting. The results point out that it can generate interpretable alerts while protecting the confidentiality of the data.

Originele taal-2Engels
TitelSACMAT 2023 - Proceedings of the 28th ACM Symposium on Access Control Models and Technologies
UitgeverijAssociation for Computing Machinery, Inc
Pagina's7-18
Aantal pagina's12
ISBN van elektronische versie9798400701733
DOI's
StatusGepubliceerd - 24 mei 2023
Evenement28th ACM Symposium on Access Control Models and Technologies, SACMAT 2023 - Trento, Italië
Duur: 7 jun. 20239 jun. 2023

Congres

Congres28th ACM Symposium on Access Control Models and Technologies, SACMAT 2023
Land/RegioItalië
StadTrento
Periode7/06/239/06/23

Bibliografische nota

Publisher Copyright:
© 2023 Owner/Author.

Vingerafdruk

Duik in de onderzoeksthema's van 'A Framework for Privacy-Preserving White-Box Anomaly Detection using a Lattice-Based Access Control'. Samen vormen ze een unieke vingerafdruk.

Citeer dit