TY - JOUR
T1 - A framework for collaborative computing and multi-sensor data fusion in body sensor networks
AU - Fortino, G.
AU - Galzarano, S.
AU - Gravina, R.
AU - Li, W.
PY - 2015
Y1 - 2015
N2 - Body Sensor Networks (BSNs) have emerged as the most effective technology enabling not only new e-Health methods and systems but also novel applications in human-centered areas such as electronic health care, fitness/welness systems, sport performance monitoring, interactive games, factory workers monitoring, and social physical interaction. Despite their enormous potential, they are currently mostly used only to monitor single individuals. Indeed, BSNs can proactively interact and collaborate to foster novel BSN applications centered on collaborative groups of individuals. In this paper, C-SPINE, a framework for Collaborative BSNs (CBSNs), is proposed. CBSNs are BSNs able to collaborate with each other to fulfill a common goal. They can support the development of novel smart wearable systems for cyberphysical pervasive computing environments. Collaboration therefore relies on interaction and synchronization among the CBSNs and on collaborative distributed computing atop the collaborating CBSNs. Specifically, collaboration is triggered upon CBSN proximity and relies on service-specific protocols allowing for managing services among the collaborating CBSNs. C-SPINE also natively supports multi-sensor data fusion among CBSNs to enable joint data analysis such as filtering, time-dependent data integration and classification. To demonstrate its effectiveness, C-SPINE is used to implement e-Shake, a collaborative CBSN system for the detection of emotions. The system is based on a multi-sensor data fusion schema to perform automatic detection of handshakes between two individuals and capture of possible heart-rate-based emotion reactions due to the individuals’ meeting.
AB - Body Sensor Networks (BSNs) have emerged as the most effective technology enabling not only new e-Health methods and systems but also novel applications in human-centered areas such as electronic health care, fitness/welness systems, sport performance monitoring, interactive games, factory workers monitoring, and social physical interaction. Despite their enormous potential, they are currently mostly used only to monitor single individuals. Indeed, BSNs can proactively interact and collaborate to foster novel BSN applications centered on collaborative groups of individuals. In this paper, C-SPINE, a framework for Collaborative BSNs (CBSNs), is proposed. CBSNs are BSNs able to collaborate with each other to fulfill a common goal. They can support the development of novel smart wearable systems for cyberphysical pervasive computing environments. Collaboration therefore relies on interaction and synchronization among the CBSNs and on collaborative distributed computing atop the collaborating CBSNs. Specifically, collaboration is triggered upon CBSN proximity and relies on service-specific protocols allowing for managing services among the collaborating CBSNs. C-SPINE also natively supports multi-sensor data fusion among CBSNs to enable joint data analysis such as filtering, time-dependent data integration and classification. To demonstrate its effectiveness, C-SPINE is used to implement e-Shake, a collaborative CBSN system for the detection of emotions. The system is based on a multi-sensor data fusion schema to perform automatic detection of handshakes between two individuals and capture of possible heart-rate-based emotion reactions due to the individuals’ meeting.
U2 - 10.1016/j.inffus.2014.03.005
DO - 10.1016/j.inffus.2014.03.005
M3 - Article
SN - 1566-2535
VL - 22
SP - 50
EP - 70
JO - Information Fusion
JF - Information Fusion
ER -