A framework for algorithm stability and its application to kinetic euclidean MSTs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)
360 Downloads (Pure)

Samenvatting

We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees.

Originele taal-2Engels
TitelLATIN 2018: Theoretical Informatics
Subtitel13th Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings
RedacteurenM.A. Bender, M. Farach-Colton , M.A. Mosteiro
Plaats van productieDordrecht
UitgeverijSpringer
Pagina's805-819
Aantal pagina's15
ISBN van elektronische versie978-3-319-77404-6
ISBN van geprinte versie978-3-319-77403-9
DOI's
StatusGepubliceerd - 1 jan. 2018
Evenement13th Latin American Theoretical INformatics Symposium (LATIN 2018) - Buenos Aires, Argentinië
Duur: 16 apr. 201819 apr. 2018
Congresnummer: 13
http://latin2018.dc.uba.ar/

Publicatie series

NaamLecture Notes in Computer Science
Volume10807
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres13th Latin American Theoretical INformatics Symposium (LATIN 2018)
Verkorte titelLATIN 2018
Land/RegioArgentinië
StadBuenos Aires
Periode16/04/1819/04/18
Internet adres

Financiering

W. Meulemans and J. Wulms are (partially) supported by the Netherlands eScience Center (NLeSC) under grant number 027.015.G02. B. Speckmann and K. Verbeek are supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 639.023.208 and no. 639.021.541, respectively.

Vingerafdruk

Duik in de onderzoeksthema's van 'A framework for algorithm stability and its application to kinetic euclidean MSTs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit