A domain agnostic normalization layer for unsupervised adversarial domain adaptation

R.R.F.M. Romijnders, Panagiotis Meletis, Gijs Dubbelman

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

15 Citaten (Scopus)

Samenvatting

We propose a normalization layer for unsupervised domain adaption in semantic scene segmentation. Normalization layers are known to improve convergence and generalization and are part of many state-of-the-art fully-convolutional neural networks. We show that conventional normalization layers worsen the performance of current Unsupervised Adversarial Domain Adaption (UADA), which is a method to improve network performance on unlabeled data sets and the focus of our research. Therefore, we propose a novel Domain Agnostic Normalization layer and thereby unlock the benefits of normalization layers for unsupervised adversarial domain adaptation. In our evaluation, we adapt from the synthetic GTA5 data set to the real Cityscapes data set, a common benchmark experiment, and surpass the state-of-the-art. As our normalization layer is domain agnostic at test time, we furthermore demonstrate that UADA using Domain Agnostic Normalization improves performance on unseen domains, specifically on Apolloscape and Mapillary.
Originele taal-2Engels
Titel2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1866-1875
Aantal pagina's10
ISBN van elektronische versie978-1-7281-1975-5
DOI's
StatusGepubliceerd - 4 mrt. 2019
Evenement2019 IEEE Winter Conference on Applications of Computer Vision, WACV - Waikoloa Village, Verenigde Staten van Amerika
Duur: 7 jan. 201911 jan. 2019

Congres

Congres2019 IEEE Winter Conference on Applications of Computer Vision, WACV
Land/RegioVerenigde Staten van Amerika
StadWaikoloa Village
Periode7/01/1911/01/19

Vingerafdruk

Duik in de onderzoeksthema's van 'A domain agnostic normalization layer for unsupervised adversarial domain adaptation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit