### Samenvatting

We address the generalized Nash equilibrium seeking problem for a population of noncooperative agents playing potential games with linear coupling constraints over a communication network. We consider a class of generalized potential games where the coupling in the cost functions of the agents is linear, i.e., J{i}(x{i}, x{-i}): =f{i}(x{i})+ ell{i}(x{-i}){ top}x{i} where ell{i} is linear. By exploiting this special structure, we design a distributed algorithm with convergence guarantee under mild assumptions, i.e., (non-strict) monotonicity of the pseudo-subdifferential mapping. The potential of the proposed algorithm is shown via numerical simulations on a networked Nash Cournot game, where we observe faster convergence with respect to standard projected pseudo-gradient algorithms.

Originele taal-2 | Engels |
---|---|

Titel | 2019 18th European Control Conference, ECC 2019 |

Plaats van productie | Piscataway |

Uitgeverij | Institute of Electrical and Electronics Engineers |

Pagina's | 3390-3395 |

Aantal pagina's | 6 |

ISBN van elektronische versie | 978-3-907144-00-8 |

DOI's | |

Status | Gepubliceerd - 1 jun 2019 |

Evenement | 18th European Control Conference, ECC 2019 - Naples, Italië Duur: 25 jun 2019 → 28 jun 2019 |

### Congres

Congres | 18th European Control Conference, ECC 2019 |
---|---|

Land | Italië |

Stad | Naples |

Periode | 25/06/19 → 28/06/19 |

### Vingerafdruk

### Citeer dit

*2019 18th European Control Conference, ECC 2019*(blz. 3390-3395). [8795852] Piscataway: Institute of Electrical and Electronics Engineers. https://doi.org/10.23919/ECC.2019.8795852